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SUMMARY

The relation between gut microbiota and the host has
been suggested to benefit metabolic homeostasis.
Brown adipose tissue (BAT) and beige adipocytes
facilitate thermogenesis to maintain host core body
temperature during cold exposure. However, the po-
tential impact of gut microbiota on the thermogenic
process is confused. Here, we evaluated how BAT
andwhite adipose tissue (WAT) responded to temper-
ature challenges in mice lacking gut microbiota. We
found that microbiota depletion via treatment with
different cocktails of antibiotics (ABX) or in germ-
free (GF) mice impaired the thermogenic capacity of
BAT by blunting the increase in the expression of un-
coupling protein 1 (UCP1) and reducing the browning
process of WAT. Gavage of the bacterial metabolite
butyrate increased the thermogenic capacity of
ABX-treated mice, reversing the deficit. Our results
indicate that gut microbiota contributes to upregu-
lated thermogenesis in the cold environment and
that this may be partially mediated via butyrate.

INTRODUCTION

In the last decade, it has been shown that adult humans have

active depots of brown adipose tissue (BAT) and that the size

and activity of such depots is reduced in people with obesity

(Cypess et al., 2009; Guilherme et al., 2008; Nedergaard et al.,

2007; Pfannenberg et al., 2010; Saito et al., 2009). This has refu-

eled speculation that obesity may be caused by lowered BAT

activity (Speakman, 2013), as was originally speculated in the

1970s (Rothwell and Stock, 1979). A diverse microbial commu-

nity resides in the alimentary tracts of all mammalian species,

comprising mainly bacteria but also including fungi, viruses,

archaea, and protozoa. Normally, gut microbiota refers to anaer-
2720 Cell Reports 26, 2720–2737, March 5, 2019 ª 2019 The Author
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obic bacteria, which are numerically dominant (Maier et al., 2014;

Qin et al., 2010). The host gut provides a suitable habitat for

particular bacterial groups, and in turn, gut microbiota contrib-

utes nutrients and energy to the host (den Besten et al., 2013;

Donohoe et al., 2011; Flint et al., 2012; Seedorf et al., 2014).

Recent reports indicated that the composition of gut microbiota

alters during cold challenge, and the transfer of ‘‘cold micro-

biota’’ increases white adipose tissue (WAT) browning, energy

expenditure, and cold tolerance (Chevalier et al., 2015). The

same group also reported that both antibiotic-treated and

germ-free mice have a browning phenotype in their WAT at

room temperature (22�C) and at thermoneutrality (30�C), sug-
gesting that depleting microbiota enhances thermogenic capac-

ity. They concluded that the elimination of microbiota increased

eosinophil infiltration and enhanced type 2 cytokine signaling

and M2 macrophage polarization in WAT, which drives the

browning process (Suárez-Zamorano et al., 2015). Most previ-

ous studies have focused on the browning of WAT, but the

impact of microbiota on the interscapular BAT has been less

studied. This is a serious omission because BAT is the major

source of adaptive thermogenic heat production (Cannon and

Nedergaard, 2004). This raises the obvious question of whether

BAT thermogenesis is responsive tomicrobiota composition and

what impact the microbiota has on both BAT and WAT under

different temperature challenges (Wang et al., 2016). This ques-

tion is made all the more important because recent work has

questioned whether macrophages synthesize catecholamines

and concluded that they do not affect adaptive thermogenesis

(Fischer et al., 2017). However, this was the primary mechanism

previously suggested to link microbiota to adaptive browning.

Accordingly, the aim of the present study was to re-evaluate

the effects of gut microbiota on the adaptive thermogenesis of

mice and to further evaluate the role of type 2 cytokine signaling

in the regulation of brown and beige adipocyte activity. We show

that microbiota depletion does not promote the browning of

WAT at room temperature; conversely, the adaptive thermo-

genic capacity of BAT andWAT under cold challenge is impaired

when the microbiota is depleted.
s.
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Figure 1. Gut Microbiota Depletion Impairs Thermoregulation

(A and B) The changes in rectal temperature during 4�C cold stimulation (A) and in room temperature (B) between control and ABXmice (n = 6 in the control group

and n = 8 in the ABX group).

(C and D) The changes of Ucp1 gene expression in the BAT (C) and scWAT (D) from control and ABX groups under cold stimulation (n = 4 per group).

(legend continued on next page)
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RESULTS

Gut Microbiota Depletion Damages Thermoregulation
To explore the effect of gut microbiota depletion on thermogen-

esis in mice, we administered an antibiotic cocktail (ABX) in the

drinkingwater (Abt et al., 2012;Hill et al., 2012;Suárez-Zamorano

et al., 2015) for 3–4weeks. Immediately following antibiotic treat-

ment, body weight dropped and then 1 week later slowly recov-

ered (Figures S1A and S1B). Microbiota depletion significantly

changed the morphology of the small intestine, cecum, and

colon (Figure S1C). These components of the intestines of ABX

mice were significantly longer (2-way ANOVA, F1,21 = 55.43,

p < 0.0001) and the cecum was highly enlarged (2-way ANOVA,

F1,21 = 55.43, p < 0.05) (Figure S1D). The morphology of the fecal

pellets was also significantly changed (Figure S1E). To determine

the impacts on thermogenic function, we conducted a cold-

response experiment. Compared to the specific-pathogen-free

mice housed under conventional conditions (control), ABX mice

had impaired thermoregulation when acutely exposed to an

ambient temperature of 4�C (Figure 1A). Control mice were able

to sustain body temperature at a significantly higher level than

the ABX-treated individuals (2-way ANOVA, F12,72 = 8.863,

p<0.0001). At room temperature, ABXmicealsohad significantly

lower core body temperatures (2-tailed Mann-Whitney test,

p = 0.027) (Figure 1B). This was consistent with the Ucp1 gene

expression, which was significantly lower in both BAT (2-way

ANOVA, F1,22 = 54.98, p < 0.0001) and subcutaneous WAT

(scWAT) (2-way ANOVA, F1,22 = 8.938, p = 0.0068) of ABX mice

under cold stimulation for 48 h (Figures 1C and 1D). In contrast

to a previous study (Suárez-Zamorano et al., 2015), we failed to

observe any effect of ABX treatment on Ucp1 gene expression

in both BAT (2-way ANOVA, F1,37 = 13.18, p > 0.9999) and scWAT

(2-way ANOVA, F1,42 = 8.817, p > 0.9999) at room temperature

(22�C) and thermoneutrality (30�C) (Figures 1E and 1F). Protein

levels of uncoupling protein 1 (UCP1) were also not significantly

elevated in scWAT (2-way ANOVA, F1,18 = 0.8266, p = 0.603)

of ABX mice compared to control mice at 22�C (Figures 1G

and 1J). Moreover, the protein levels of UCP1 were significant

lower in ABX mice after cold stimulation in both BAT (2-way

ANOVA, F1,20 = 8.212, p = 0.0037) and scWAT (2-way ANOVA,

F1,18 = 0.8266, p = 0.0079) (Figures 1H and 1K), which is consis-

tent with their impaired ability to maintain body temperature

under cold challenge (Figure 1A). These data indicate that the

depletion ofmicrobiota impairs the adaptive thermogenic capac-

ity of both BAT and scWAT. We also did not observe any differ-

ences in expression of a core set of thermogenic genes in perigo-

nadal visceral adipose tissue (pgVAT) at 22�C and 4�C between

the control and ABX groups (Figure S1F). However, expression

of some genes in pgVAT was higher in ABX at 30�C (Figure S1F).

Consistentwith previous reports, the expression levels ofUcp1 in

different tissues indicated that BAT is the key tissue for thermo-
(E and F) The thermogenic gene expression in the BAT (E) and scWAT (F) from con

(G–L) Representative western blot and quantification of UCP1 in the BAT (22� in
groups under different ambient temperatures (n = 5–6 per group).

The results shown are representative of 2 independent experiments (A–D) or 3 inde

analyses were performed using the Student’s t test and regular one-way or tw

*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. See also Figure S1 and Ta
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genesis compared to scWAT and pgVAT (Cannon and Neder-

gaard, 2004) (Figure S1G).

Methionine sulfoxide, fructose 2,6-bisphosphate (Sobrino

et al., 1988), cyclic guanosine monophosphate (cGMP) (Hoff-

mann et al., 2015), and pantothenic acid (vitamin B5) levels in

serum were significantly higher in control mice at both 22�C
and 4�C compared to ABX individuals. In contrast, 11b-prosta-

glandin F2awas significantly lower in control mice at both 22�C
and 4�C. A previous study reported that the gut microbiota

may regulate tryptophan metabolism through tryptophan hy-

droxylase and promote serotonin biosynthesis (Yano et al.,

2015). Both germ-free (GF) and ABX mice displayed deficient

peripheral serotonin and higher tryptophan concentrations.

Consistent with previous studies, we also found that tryptophan

was significantly elevated in ABX-treated mice (Figure S1H;

Table S1). Our results suggest that microbiota depletion re-

presses the expression of Ucp1, and UCP1 thus impairs adap-

tive thermogenesis in BAT and scWAT at both 22�C and 4�C.

Gut Microbiota Depletion Reduces the Energy
Metabolism of the Host
Many studies previously reported that gut microbiota may influ-

ence diverse biological phenomena (Flint et al., 2012; Sommer

and Bäckhed, 2013; Tremaroli and Bäckhed, 2012; Zhao,

2013). To evaluate whether ABX-mediated impairment of ther-

mogenesis of BAT and scWAT contributes to whole-body energy

expenditure, we used indirect calorimetry. At 22�C, ABX mice

had �13% lower oxygen consumption (VO2) (Figures 2A and

2C) compared to control mice (2-way ANOVA, F2,35 = 23.34,

p = 0.0304) without any significant differences in the respiratory

exchange ratio (RER) (2-way ANOVA, F2,31 = 0.1243, p = 0.5681)

(Figures 2D and 2F) or physical activity (2-way ANOVA, F2,29 =

1.333, p > 0.9999) (Figures 2G and 2I). Compared to 22�C,
cold exposure (4�C) enhanced energy expenditure in both con-

trol and ABX mice, which likely reflects the activation of cold-

induced thermogenesis. However, ABX mice had �17% lower

oxygen consumption (Figures 2B and 2C) compared to control

mice at 4�C (2-way ANOVA, F2,35 = 23.34, p < 0.0001), again,

with no impact on the RER (Figures 2E and 2F) (2-way ANOVA,

F2,31 = 0.1243, p = 0.8186) and physical activity (2-way

ANOVA, F2,29 = 1.333, p = 0.7487) (Figures 2H and 2I). At the

same time, ABX mice had smaller metabolic changes in

response to the circadian cycle compared to control mice at

4�C (Figure 2B). To evaluate whether the lower body mass

following the initial antibiotic treatment influenced the thermo-

genesis process (Figures S1A and S1B), we generated a new

mice group that was pair fed (PF) to match the energy absorption

of the ABX group each day. The similar pattern of change in

body weight between ABX and PF mice (Figure S2A) indicated

that this pair feeding was effective. Both ABX and PF groups

had lower body weight compared to control individuals (2-way
trol and ABX groups under different ambient temperatures (n = 5–10 per group).

G, 4� in H and I) and scWAT (22�C in J, 4�C in K and L) from control and ABX

pendent experiments (E–L). All results are given asmean ± SEM and statistical

o-way ANOVA. Differences with p < 0.05 were considered to be significant.

ble S1.
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repeated-measures ANOVA, F59,1,593 = 125.9, p < 0.0001) (Fig-

ure S2A) and fat mass from different anatomic sites (Figures

S2E–S2G). Based on the difference in daily energy intake (Fig-

ure S2B) and the fecal energy losses (Figure S2C), ABX mice

had a significantly lower assimilation efficiency (2-way ANOVA,

F17,442 = 8.617, p < 0.0001) (Figure S2D).

At 22�C, there was no significant difference in the oxygen con-

sumption rate between PF and ABX mice (2-way ANOVA, F2,35 =

23.34, p > 0.9999) (Figures 2A and 2C). However, PF mice had a

significantly higher cold-induced energy expenditure (�25%

higher) compared to ABX mice (2-way ANOVA, F2,35 = 23.34,

p < 0.0001) (Figure 2C). During the daytime, the RER of the PF

group was lower (1-way ANOVA, F5,295 = 126, p < 0.0001) than

the control and ABX groups, partly because they ate their ration

of food in the night and hence had no food available in the day.

The physical activity of PF mice also showed increasing food

anticipation behavior at �16:30 h (1-way ANOVA, F5,50 = 11.53,

p<0.0001),whichwas30minbefore the feed timeof 17:00 h (Fig-

ures 2G and 2H), but total physical activity was not significantly

different (2-way ANOVA, F2,29 = 1.333, p = 0.2794) (Figure 2I).

Furthermore, we compared expression of the core thermo-

genic genes in BAT and scWAT and found that PF mice had a

significantly higher expression of Ucp1 compared to ABX mice

(Figures 2J, 2K, and S2H). These data for PF mice suggested

that energy intake and the temporarily lowered body weight

observed in ABXmicewere not the cause of lower energy expen-

diture and thermogenic capacity. Instead, the data on whole-

body energy expenditure (Figures 2A–2C) and UCP1 protein

expression in BAT and scWAT (Figures 1G–1L) supported the

idea that the depletion of microbiota impaired the thermogenesis

of BAT and scWAT.

Alternatively Activated Macrophages Do Not Affect
Energy Metabolism and Thermogenesis in ABX Mice
According to previous studies, type 2 cytokine signaling and

alternative macrophage activation (M2) play a key role in the

browning process of scWAT across the temperature range

from 30�C to 4�C, and these may mediate the impact of micro-

biota on thermoregulation (Nguyen et al., 2011; Suárez-Zamor-

ano et al., 2015). We therefore measured the gene expression

of M1 and M2 markers (CD274, Nos2, Arg1, Mrc1, Clec10, and

Ccr3), a marker of eosinophils (SiglecF), and the profiles of

some type 2 cytokines (interleukin-4 [IL-4], IL-5, and IL-33) using

qPCR. We observed no significant differences of these genes in

BAT, scWAT, and pgVAT between control and ABX mice at

different environment temperatures (Figures 3A, 3B, and S3A).

By using flow cytometry (Figures S3B and S3C), we also found

no evidence for the enhancement of eosinophil and alternative

activated macrophage populations in BAT, scWAT, and pgVAT
Figure 2. Gut Microbiota Depletion Reduces the Energy Metabolism o

(A–I) Energy expenditure as determined by longitudinal and average oxygen cons

total physical activity (22�C in G, 4�C in H and I) at different ambient temperatures

group).

(J and K) Gene expression analysis of thermogenic markers in BAT (J) and scWA

All of the results shown are representative of 2 independent experiments. All resu

Student’s t test and regular one-way or two-way ANOVA. Differences with p < 0

****p < 0.0001. See also Figure S2.
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of the control mice after cold stimulation (Figures 3C–3E).

Conversely, we noticed that the portion of M2 macrophages in

total immune cells was significantly decreased in BAT (2-way

ANOVA, F1,20 = 0.5253, p = 0.0008) and scWAT (2-way

ANOVA, F1,20 = 0.1078, p < 0.0001) in control mice at 4�C
compared to that at 22�C. However, ABX mice had an increase

of alternative activated macrophages in BAT (2-way ANOVA,

F1,20 = 0.5253, p < 0.0001), scWAT (2-way ANOVA, F1,20 =

0.1078, p = 0.0006), and pgVAT (2-way ANOVA, F1,20 = 0.6391,

p = 0.0168) (Figures 3C–3E) at 4�C compared to 22�C. At

22�C, ABX mice had fewer M2 macrophages in BAT (2-way

ANOVA, F1,20 = 0.5253, p < 0.0001), scWAT (2-way ANOVA,

F1,20 = 0.1078, p < 0.0001), and pgVAT (2-way ANOVA, F1,20 =

36.86, p < 0.0001) compared to control mice (Figures 3C and

3D). Consistent with a previous study (Suárez-Zamorano et al.,

2015), we found that ABX mice had significantly more eosino-

phils in scWAT (2-way ANOVA, F1,20 = 0.8922, p = 0.0085) and

pgVAT (2-way ANOVA, F1,20 = 16.77, p = 0.0012) compared to

control mice at 22�C (Figures 3D and 3E). After cold exposure,

however, the population of eosinophils in ABX mice decreased

and was significantly lower in BAT compared to control mice

(2-way ANOVA, F1,20 = 3.385, p = 0.0077) (Figures 3D and 3E).

We further measured several type 2 cytokines, including IL-4

(2-way ANOVA, F1,43 = 0.3194, p = 0.5749), IL-5 (2-way

ANOVA, F1,43 = 2.809, p = 0.1010), and IL-33 (2-way ANOVA,

F1,43 = 2.125, p = 0.1524) in scWAT by ELISA, but again, de-

tected no significant difference between the control and the

ABX groups (Figure 3F). To further assess the function of IL-4

on energy metabolism, we evaluated the metabolic effect of

chronic IL-4 treatment in control and ABX mice housed at 23�C
± 1�C. We administered IL-4 (50 mg/kg) daily for 5 days. Mea-

surement of the daily energy expenditure (DEE) during this period

revealed no differential effect caused by IL-4 compared to PBS

either in the control (2-way ANOVA, F3,9 = 2.960, p = 0.7155)

group or in the ABX (2-way ANOVA, F3,9 = 2.960, p = 0.9713)

group (Figure 3H); there was also no influence on RER and phys-

ical activity (Figures S3D and S3E). At the same time, IL-4 could

induce M2 polarization in BAT and scWAT in the control group,

confirming that IL-4 works well but did not increase the expres-

sion of Ucp1 either in BAT or in scWAT from both groups (2-way

ANOVA, F3,30 = 70.75, p > 0.9999) (Figures S3F–S3H). These

results suggest that type 2 immune signaling and alternative

macrophage activation are unlikely to make a direct contribution

to adaptive thermogenesis, which is consistent with another

recent study (Fischer et al., 2017).

To probe whether microbiota depletion induced lower-body

fat mass (Figures S2E–S2G), leading to the impaired release of

free fatty acids (the principal substrate for BAT thermogenesis),

we measured circulating free fatty acid (FFA) and triglyceride
f the Host

umption rate (22�C in A, 4�C in B and C), RER (22�C in D, 4�C in E and F), and

(n = 8–10 in the control group, n = 6–8 in the ABX group, and n = 5–6 in the PF

T (K) (n = 5–8).

lts are given as mean ± SEM and statistical analyses were performed using the

.05 were considered to be significant. *p < 0.05, **p < 0.01, ***p < 0.001, and
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(TG) levels. No significant decrease in circulating FFA (2-way

ANOVA, F1,43 = 0.03571, p = 0.8518) and triglyceride (2-way

ANOVA, F1,40 = 0.8681, p = 0.3571) was observed when micro-

biota was depleted (Figure 3I). At the same time, insulin (2-way

ANOVA, F1,17 = 6.463, p = 0.0210) and leptin (2-way ANOVA,

F1,18 = 11.58, p = 0.0032) of ABX mice were significantly lower

than control mice (Figure 3I). It was potentially the case, there-

fore, thatmicrobiota depletion could have impeded the synthesis

of noradrenaline, which is important for lipolysis and thermogen-

esis. We measured the noradrenaline content in scWAT, and

there was no significant difference between control and ABX

mice (2-way ANOVA, F1,17 = 2.674, p = 0.1204) (Figure 3G). In

summary, we failed to demonstrate any significant relation be-

tween thermogenesis and type 2 cytokine signaling and alterna-

tive macrophage activation. Moreover, microbiota depletion did

not promote browning via the enhancement of type 2 cytokine

signaling in scWAT. Even though at 22�C ABX mice had more

eosinophils in scWAT and pgVAT than in control mice, we

observed no difference inUcp1 expression. Our data are consis-

tent with the recent report that type 2 cytokines have no function

in thermogenesis (Fischer et al., 2017).

The Characteristic Energy Metabolism of GF Mice
To assess whether our results could be explained by antibiotic

toxicity effects on thermogenesis, we used GF mice to further

verify our results. The core results in GF mice were consistent

with the data we obtained from ABX mice. At room temperature,

GF mice had a significantly lower core body temperature

(35.88�C ± 0.25�C) compared to specific-pathogen-free

(SPF) mice (36.83�C ± 0.12�C) (2-tailed Mann-Whitney test,

p = 0.0041) (Figure 4A) without a thermal conductance difference

(1-way ANOVA, F2,10 = 50.15, p = 0.9888) (Figure S4A). Using the

doubly labeled water (DLW) technique (Speakman, 1997), we

measured the energy metabolism of GF mice and found that

GF mice had lower DEEs than SPF mice, despite being substan-

tially heavier (2-tailedMann-Whitney test, p < 0.0001). Across the

SPF individuals, the bodymass averaged 26.22± 0.27 g andDEE

averaged 42.50 ± 1.24 kJ/day (n = 16). In the GFmice, the equiv-

alent values were 34.04 ± 1.02 g and 18.61 ± 1.27 kJ/day (n = 12)

(Figure 4B). Furthermore, we observed no beneficial effect of the

absence of microbiota in GF mice on the browning in scWAT by

either qPCR (2-way ANOVA, F1,16 = 17.79, p > 0.9999) or western

blot analysis (2-way ANOVA, F1,16 = 12.55, p = 0.1584) compared

to SPF mice (Figures 4C and 4D). These observations contrast

the previous study, which suggested that GF mice have more
Figure 3. Alternatively Activated Macrophages Do Not Affect Energy M

(A and B) Gene expression analysis of immune markers in BAT (A) and scWAT (B

(C–E) Fluorescence-activated cell sorting (FACS) analysis of the cell percentages o

and pgVAT (E) under 22�C and 4�C (n = 6).

(F) Tissue type 2 cytokine levels (IL-4, IL-5, and IL-33) in scWAT, normalized to t

(G) The noradrenaline level in scWAT, normalized to total protein concentration,

(H) Energy expenditure as determined by longitudinal and average oxygen consum

room temperature (23�C ± 1�C).
(I) Circulating FFA, triglyceride, insulin, and leptin levels in control and ABX mice

The results shown are representative of 2 independent experiments (A–E). All re

the Student’s t test and regular one-way or two-way ANOVA. Differences with p <

****p < 0.0001. See also Figure S3.
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Ucp1 in scWAT (Suárez-Zamorano et al., 2015). We observed

no significant differences in the expression profiles of markers

of adipocyte differentiation or mitochondrial electron transport-

related genes in the scWAT of GFmice (Figure 4C). Furthermore,

the UCP1 expression in BAT was significantly reduced (�55%)

(2-way ANOVA, F1,16 = 12.55, p = 0.0307), but there was no

change in the hormone-sensitive lipase levels (2-tailed Mann-

Whitney test, p = 0.1508) (Figure 4D). Notably, despite the

significant upregulation of IL-4 (2-tailed Mann-Whitney test,

p = 0.0003), IL-5 (p = 0.0047), and IL-33 (p = 0.003) in the scWAT

of GF mice, there were no differences in the expression of ther-

mogenic genes, suggesting that type 2 cytokines are not the

key drivers of the browning process in the GF model (Figure 4E).

Rather, upregulation of these cytokines may be compensation

for the compromised immune system of GF mice (Arpaia et al.,

2013; Brestoff and Artis, 2013; Hill et al., 2012). Noradrenaline

levels were also higher in the scWAT of GF mice (2-tailed

Mann-Whitney test, p = 0.0648) (Figure 4E). This suggested that

scWAT of GF mice was resistant to noradrenaline-induced

browning. To demonstrate whether this was the case, we admin-

istrated SPF and GF mice with CL-316243 (1 mg/kg) for 2 days.

The dose of CL-316243 that each GF mouse received was

significantly higher than that for SPF mice based on their greater

body weight, but notably, the amount of UCP1 protein in the

scWAT of GF mice post-treatment was significantly lower

(1-way ANOVA F1,6 = 5.98, p = 0.04) (Figure 4F). After CL-

316243 treatment, more multilocular lipid droplets adipocytes

appeared in the scWAT of SPF mice than in GF mice, which is a

classic ‘‘browning’’ phenotype (Figure 4G). The browning of

WAT induced by CL-316243 increases the use of fatty acids as

a metabolic substrate. The weight of scWAT (2-way ANOVA,

F1,20 = 1.092, p = 0.0212) and pgVAT (2-way ANOVA, F1,20 =

1.648, p = 0.0032) significantly decreased in the SPF group

(Figure S4B), and the content of FFA was reduced (2-way

ANOVA, F1,21 = 14.59, p = 0.0003) but not in GF mice (2-way

ANOVA, F1,21 = 14.59, p > 0.9999) (Figures 4H and S4C). Triglyc-

eride decreased in both the SPF group (2-way ANOVA, F1,21 =

103.5, p < 0.0001) and the GF group (2-way ANOVA, F1,21 =

103.5, p = 0.0008). With the decrease in fat mass, leptin content

was also reduced in SPF mice, but adiponectin levels were

unchanged (Figure 4H). These results further support our conclu-

sion that type 2 cytokines cannot promote the browning of

scWAT. Despite higher levels of type 2 cytokines and norepi-

nephrine, microbiota depletion did not promote the browning of

scWAT in GF mice.
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Figure 4. The Characteristic Energy Metabolism of GF Mice

(A) Rectal temperature of SPF and GF mice at room temperature (n = 13–16).

(B) DEE (kilojoules per day) using the DLW method in SPF mice (n = 16) and GF mice (n = 12) in relation to body weight (grams).

(C) Gene expression analysis of the thermogenic markers in the scWAT of SPF and GF mice (n = 8).

(D) Representative western blot and quantification of UCP1 and hormone-sensitive lipase (HSL) in the BAT and scWAT of SPF and GF mice at 22�C (n = 5).

(E)Tissue type2cytokine levels (IL-4, IL-5,and IL-33)and thenoradrenaline levelofSPFandGFmice inscWAT,normalized to totalproteinconcentration,at22�C(n=8).

(F) Representative western blot and quantification of UCP1 in scWAT of SPF and GF mice treated with CL-316243 for 2 days (n = 4).

(G) H&E staining on sections from the scWAT of SPF and GF mice treated with CL-316243 for 2 days. Right image shows part of the image zoomed on the left.

Scale bars: left, 92 mm; right, 46 mm.

(H) Circulating adiponectin, FFA, leptin, and triglyceride levels in SPF and GF mice treated with PBS or CL-316243 for 2 days.

All results are given as mean ± SEM and statistical analyses were performed using the Student’s t test and regular one-way or two-way ANOVA. Differences with

p < 0.05 were considered to be significant. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. See also Figure S4.
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Figure 5. Depletion of the Microbiota by Different Antibiotic Cocktail Protocols Have Similar Physiological Effects

(A and B) Energy expenditure as determined by longitudinal and average oxygen consumption rate (A) and RER (B) before and after PBS (n = 4 per group) or

CL-316243 (n = 8 per group) treatment in control and ABX mice.

(C) Representative western blot and quantification of UCP1 in the BAT and scWAT from the control group and the ABX group after CL-316243 treatment for 2 days

(n = 6).

(D) Gene expression analysis of Ucp1 in the BAT and scWAT of control and ABX mice (n = 4 in PBS group and n = 9 in CL-316243 treatment group).

(legend continued on next page)
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Depletion of the Microbiota by Different ABX Protocols
Have Similar Physiological Effects
We explored whether ABX affected b3-adrenoceptor activation.

Oxygen consumption in response to CL-316243 at room tem-

perature was significantly and rapidly elevated in control mice

compared to PBS treatment (2-way ANOVA, F22,22 = 12.39,

p < 0.0001). However, this induction was severely attenuated

in ABX mice (2-way ANOVA, F22,22 = 12.39, p = 0.2178) (Fig-

ure 5A). There was no difference in the RER (2-way ANOVA,

F22,22 = 1.256, p > 0.9999) (Figure 5B) or physical activity

(2-way ANOVA, F22,22 = 7.588, p > 0.9999) (Figure S5A) between

control and ABX mice under CL-316243 treatment. Never-

theless, control mice gained significantly more UCP1 protein

(2-way ANOVA, F1,20 = 13.37, p < 0.0001) (Figure 5C) and

Ucp1mRNA (2-way ANOVA, F1,21 = 9.244, p < 0.0001) in scWAT

(Figure 5D) under CL-316243 treatment than ABX mice did.

We next asked whether different ABX formulations could also

suppress thermogenesis. We repeated our ABX experiment

along with another published ABX protocol (referred to here as

ABX-SZ) for 30 days. Both ABX and ABX-SZ demonstrated no

difference in body weight (2-way repeated-measures ANOVA,

F21,588 = 105.1, p = 0.3635) and food intake (2-way repeated-

measures ANOVA, F21,567 = 9.962, p = 0.7) compared to control

mice after 30 days’ treatment (Figures S5B and S5C), and they

demonstrated no difference in tissue mass at different anatomic

sites between ABX and ABX-SZ (Figure S5D). Compared to con-

trol mice, both ABX and ABX-SZ mice had similar Ucp1 gene

expression levels in scWAT at room temperature (2-way

ANOVA, F1,28 = 103.4, p > 0.9999), but Ucp1 gene expression

level was significantly decreased when acutely exposed to an

ambient temperature of 4�C for 48 h (2-way ANOVA, F1,28 =

103.4, p = 0.0010) (Figure 5E). There was no difference between

ABX and ABX-SZ in oxygen consumption (2-way ANOVA, F2,9 =

3.23, p > 0.9999), RER (2-way ANOVA, F2,9 = 2.887, p = 0.1583),

and physical activity (2-way ANOVA, F2,9 = 3.835, p = 0.0784)

before and after CL-316243 treatment at room temperature (Fig-

ures 5F, S5E, and S5F). Compared to control mice, both ABX

and ABX-SZ mice showed lower oxygen consumption (2-way

ANOVA, F2,9 = 13.43, p = 0.0313) after CL-316243 treatment.

There was also no difference in RER (2-way ANOVA, F2,9 =

2.887, p > 0.9999) and physical activity (2-way ANOVA, F2,9 =

3.980, p > 0.9999) in ABX-SZ mice compared to control mice.

To determine the gene expression signatures after different

ABX treatments in fat tissue, we performed RNA-seq analysis

in scWAT and pgVAT from mice at room temperature on treat-

ment day 28. Hierarchical clustering of the differentially ex-
(E) Gene expression analysis of the thermogenic markers in the scWAT of contro

(F) Energy expenditure as determined by longitudinal and average oxygen consum

ABX, and ABX-SZ mice.

(G) Hierarchical clustering of the differentially expressed genes from the seque

Pearson correlation distance metric, and columns were clustered using the one m

averaged counts for each cell type.

(H) Highlighted differentially expressed genes validated by qPCR from the ABX

dataset.

The results shown are representative of 2 independent experiments (A–F). All re

the Student’s t test and regular one-way or two-way ANOVA. Differences with p <

****p < 0.0001. See also Figures S5 and S6 and Tables S2 and S3.
pressed genes among the RNA-seq samples is shown in Figures

5G, S6A, and S6B, and Table S2. The main differences in scWAT

were related to immune pathways, and no difference was found

in pgVAT between ABX and ABX-SZ (Figure S6D). Consistent

with our qPCR results, both ABX and ABX-SZ mice showed no

differences in the gene expression of Ucp1, M2 markers, or

type 2 cytokines compared to control mice. The butyrate recep-

tor Hcar2 (hydroxycarboxylic acid receptor 2, also known as

Gpr109a) was significantly upregulated in both ABX and ABX-

SZ mice compared to control mice, while the FFA receptors

Ffar2 (also known as Gpr43) and Ffar3 (also known as Gpr41)

showed no difference (Figure S6C). Selected gene expression

was validated by qPCR (Figure 5H). There was no difference in

gene expression pattern between ABX and ABX-SZ in pgVAT

(Table S3). Our data suggested that the depletion of the micro-

biota by different ABX protocols had similar effects and did not

promote elevated DEE and adaptive thermogenesis.

Recolonization Microbiota and Butyrate Partially
Rescue the Thermogenesis of ABX Mice
We assessed 16S rDNA contents per the fecal pellet in control,

ABX, and ABX-SZ mice by qPCR (Thackray et al., 2018). Both

ABX and ABX-SZ treatments reduced bacterial contents to

(5 ± 0.5) 3 104 pg DNA per gram fecal pellet compared to

(2.8 ± 0.2)3 107 pg/g in control mice. These changes took place

immediately after the ABX and ABX-SZ treatments, suggesting

that both ABX protocols efficiently depleted the majority of gut

microbiota (Figure 6A). Sequencing of 16S rDNA amplicons

from the cecum revealed that fewer operational taxonomic units

(OTUs) were detected from ABX and ABX-SZ groups compared

to the control group (Figure 6B). Furthermore, weighted unique

fraction metric (UniFrac) principal-coordinate analysis (PCoA)

illustrated that these 2 different antibiotic protocol treatments

(ABX and ABX-SZ) had similar impacts on the bacterial compo-

sition (Figure 6C). Lachnospiraceae (belonging to the butyrate-

producing bacteria Clostridia) were induced by cold stimulation

in control mice (Figures 6D, 6E, S7A, and S7B). PF individuals

that showed a higher Ucp1 expression level also had signifi-

cantly higher Clostridia. The DNA abundance of Clostridia in

the remaining ABX and ABX-SZ feces contents were significantly

lower than in control mice at 4�C.
We explored whether the repopulation of microbiota in ABX

mice could reverse the negative impact on WAT browning.

Immediately following the withdrawal of antibiotic treatment,

ABX mice were transferred to cages containing the old nests

and dirty bedding of control mice for 5 days. After 5 days of
l, ABX, and ABX-SZ mice (n = 5–6).

ption rates before and after CL-316243 (n = 4 per group) treatment in control,

ncing dataset in scWAT (n = 5–6). Rows were clustered using the one minus

inus Spearman correlation distance metric. Clustering was performed with the

and ABX-SZ groups compared to the control group in the RNA sequencing

sults are given as mean ± SEM and statistical analyses were performed using

0.05 were considered to be significant. *p < 0.05, **p < 0.01, ***p < 0.001, and
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Figure 6. Recolonization Microbiota and Butyrate Partially Rescue the Thermogenesis of ABX Mice

(A) Bacterial 16S rDNA content per gram feces from treatment days 0–29 were determined by qPCR (n = 3 per group).

(B) Observed OTUs (99% similarity) in cecum feces (n = 5–8).

(C) Weighted UniFrac PCoA of the cecum microbiota.

(D) Comparison of the family-level proportional abundance of cecum feces.

(E) Richness represented as the proportions of OTUs classified at the class and family ranks (n = 5–8).

(F) The changes of rectal temperature of control and ABX mice after PBS or butyrate treatment for 7 days at room temperature (23�C ± 1�C) (n = 8 in the control

group and n = 7 in the ABX group).

(legend continued on next page)
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microbiota repopulation treatment, these mice were transferred

into an ambient temperature of 4�C for 48 h. We found that the

16S rDNA contents per fecal pellet measured by qPCR (Thack-

ray et al., 2018) and the short-chain fatty acid (SCFA) levels,

including acetate, propionate, and butyrate from the cecum

feces, were significantly restored in the repopulated mice (RO)

compared to the ABX mice (Figures S7C and S7D). RO mice

had a significantly increased expression of Ucp1 (1-way

ANOVA, F2,13 = 8.492, p = 0.0036) in response to cold stimulation

compared to ABXmice (Iida et al., 2013) (Figure S7E). These data

indicated that gut microbiota recolonization benefits adaptive

thermogenesis in scWAT.

A potential mechanism by which microbiota may influence

host metabolism is via metabolites generated during micro-

bial fermentation in the gut. Previous studies reported that

commensal bacterial metabolites SCFAs, especially butyrate,

a typical histone deacetylase (HDAC) inhibitor (Candido et al.,

1978; Sealy and Chalkley, 1978), may regulate the expression

of numerous genes through different mechanisms (Arpaia

et al., 2013; Ganal et al., 2012; Kaiko et al., 2016; Mariño et al.,

2017; Olszak et al., 2012; Walsh et al., 2015). HDAC1 and

HDAC3 have been demonstrated to play a key role in the thermo-

genesis process (Emmett et al., 2017; Li et al., 2016). Most of the

butyrate in the cecum may be used by mitochondria as the en-

ergy substrate in the colon. However, some butyrate could enter

the circulation system and cross the blood-brain barrier via

monocarboxylate transporters (MCTs) (Vijay and Morris, 2014).

Recent studies suggested that butyrate could activate BAT via

a direct gut-brain neural circuit (Li et al., 2018). We therefore

assessed whether exogenous butyrate would promote the

adaptive thermogenesis in mice with depleted microbiota.

Both control and ABX mice were administered butyrate sodium

(80 mg/day) for a consecutive 7 days by oral gavage at room

temperature (23�C ± 1�C). We found that the core body temper-

ature of ABX mice increased from 36.34�C ± 0.16�C to 37.07�C
± 0.22�C (2-way ANOVA, F1,26 = 0.5477, p = 0.0165), but there

was no significant effect on control mice (from 36.83�C ±

0.13�C to 36.82�C ± 0.09�C) (Figure 6F). Protein analysis showed

that butyrate treatment significantly increased UCP1 content in

BAT (1-way ANOVA, F1,6 = 5.98, p = 0.017) and scWAT (1-way

ANOVA, F1,6 = 5.98, p = 0.019) of ABX mice compared to control

mice (Figure 6G), but butyrate treatment had no influence on

bodyweight in control and ABXmice (Figure S7F). A recent study

suggested that butyrate decreases food intake and inhibits

orexigenic neuron activity in the hypothalamus (Li et al., 2018).

We also found that butyrate decreased food intake in the control

group, but not in the ABX-treated group (Figure S7G). The

butyrate level in the cecum feces was significantly decreased

by a factor of �1,000 in ABX (3.4 ± 0.2 mMol/g) and ABX-SZ

(3.2 ± 0.14 mMol/g) individuals. The butyrate gavage treatment

restored an �10% butyrate level (220.2 ± 54.6 mMol/g)

compared to the control group (2,352 ± 206.2 mMol/g) (Fig-
(G) Representative western blot and quantification of UCP1 in the BAT and scW

(H) SCFA levels per gram feces in the cecum (n = 6–8 per group).

All results are given as mean ± SEM and statistical analyses were performed using

p < 0.05 were considered to be significant. *p < 0.05, **p < 0.01, ***p < 0.001, an
ure 6H). In contrast to the cecum feces, there was no significant

difference between control mice and ABX mice in the serum

butyrate levels after butyrate gavage. This result is consistent

with recent studies that indicated that the suppression of food

intake by butyrate gavage was independent of the circulating

butyrate levels (Chevalier et al., 2015; Li et al., 2018) (Figure S7H;

Table S4). These data suggest that the bacterial metabolite

butyrate increased the energy expenditure and partially

rescued the impaired thermogenesis induced by the depletion

of microbiota.

Isotope Tracing and 13C-Butyrate Metabolic Flux
Analysis In Vivo

The mechanism by which butyrate may regulate body tempera-

ture and UCP1 expression is not clear. One possible mechanism

is that oral-gavaged butyrate could be distributed to peripheral

tissues, such as BAT and WAT, when the microbiota is depleted

and the butyrate plays the role of an energy substrate or an

HDAC inhibitor. An alternative possible mechanism is that the

brain is sensitized to gut butyrate levels after ABX treatment,

and the gavaged butyrate regulates BAT through an activated

gut-brain axis. To explore these different mechanisms, we

measured whether there was a difference in exogenous butyrate

distribution using gavage of 13C-labeled butyrate. We adminis-

trated the same level of butyrate sodium to control and ABX

mice for 6 days and gavage mixed [U13C] and 12C butyrate so-

dium (1:9 ratio) at day 7. Butyrate could be used bymitochondria

after distribution and exhaled as CO2. We therefore carefully

determined the time of sacrifice at 1 h after gavage bymeasuring

the 13CO2 in control mice (Figure S8A). Since butyrate could

enter the tricarboxylic acid (TCA) cycle via acetyl-coenzyme A

(CoA), we performed a targeted metabolite analysis for SCFA

and TCA metabolites in several tissues (Figure 7A). The uptake

of acetate, propionate, and butyrate in the cecum and colon

were largely limited in ABX individuals, and the butyrate gavage

treatment could selectively restore butyrate levels in the cecum

and colon (Figures 7B, 7C, S8B, and S8C). The 13C:12C ratio of

butyrate in ABX individuals was significantly higher than that in

control individuals in the colon (7.8% ± 1.1% versus 10.5% ±

0.4%) and cecum (7.6% ± 1.1% versus 10.4% ± 0.4%) (Fig-

ure 7F). We found that several m + 2 isotopologues of TCA

metabolites such as citrate, succinate, fumarate, and malate

were significantly enriched in the brains of ABX mice compared

to control mice after butyrate gavage treatment (Figure 7D).More

important, the fractional contribution of [U13C] butyrate to citrate

was substantially higher in the brain (>1:9 ratio) than BAT,

scWAT, colon, and cecum, and the 13C:12C ratio of citrate was

significantly higher in ABX individuals (42.2% ± 4.5%) compared

to control individuals (25.3% ± 3.3%) in the brain (Figure 7F). This

result suggested that there is a selective route for butyrate from

the gut to the brain. Recent studies suggested that the enrich-

ment of succinate could activate thermogenesis in BAT (Mills
AT of control and ABX mice after PBS or butyrate treatment for 7 days.

the Student’s t test and regular one-way or two-way ANOVA. Differences with

d ****p < 0.0001. See also Figure S7 and Table S4.
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Figure 7. Isotope Tracing and 13C-Butyrate Metabolic Flux Analysis In Vivo

(A) Schematic diagrams of 13C-butyrate tracing experiments in mice.

(B–E) Abundance of isotopic labeling TCA cycle metabolites and SCFA in cecum (B), colon (C), brain (D), and BAT (E) (n = 6–10).

(F) Proportional isotopic labeling profiles of TCA cycle metabolites (n = 9–10).

Data represent means ± SEMs, based on 2-tailed Mann-Whitney test (F). All results are given as mean ± SEM and statistical analyses were performed using

the Student’s t test and regular one-way or two-way ANOVA. Differences with p < 0.05 were considered to be significant. *p < 0.05, **p < 0.01, ***p < 0.001, and

****p < 0.0001. See also Figure S8.
et al., 2018), and we confirmed that the succinate levels were

higher than other TCA metabolites in the cold-stimulated BAT

(Figure 7E). There was no significant enrichment difference in

m + 4 butyrate or m + 2 TCA metabolites in BAT (Figure 7E)

and scWAT (Figures S8D and S8E) between control and ABX

mice after butyrate gavage treatment. These results indicated

that butyrate probably regulates body temperature and UCP1
2732 Cell Reports 26, 2720–2737, March 5, 2019
expression via an activated gut-brain axis, rather than by a direct

interaction between butyrate and the adipose tissues.

DISCUSSION

Increasing numbers of studies have reported relations between

the gut microbiota and physiological states of the host in both



mice and humans. Although some studies indicated a link be-

tween the gut microbiota and obesity and diabetes (Cani et al.,

2012; Cox and Blaser, 2013; Ley et al., 2005; Turnbaugh et al.,

2006), the impact of the gut microbiota on different adipocytes

is unclear. Since UCP1 plays a vital role in nonshivering thermo-

genesis, we focused on whether the gut microbiota affects

UCP1-dependent thermogenesis. We found that UCP1 was

blunted during an acute cold ambient temperature challenge

and after administration of a b3-adrenoceptor (Adrb3) agonist,

when the gut microbiota was absent. Our work supports the

idea of a link between gut microbiota and UCP1-dependent

thermogenesis of brown and beige (brite) adipocytes. Increasing

evidence suggests that UCP1 is not required in long-term cold

adaptation, and the glucose uptake of BAT under CL-316243

stimulation (Keipert et al., 2017) and UCP1-independent

thermogenic mechanisms such as creatine (Kazak et al.,

2015) or sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2b

(SERCA2b) (Ikeda et al., 2017) cycles in beige adipocytes may

also contribute to whole-body energy homeostasis. Whether

these processes are also impaired in the absence of the gut

microbiota is currently unknown.

GF and ABX mice have been used frequently to study the

impact of gut microbiota on the host (Lundberg et al., 2016;

Sivan et al., 2015; Vétizou et al., 2015; Yang et al., 2017). Here,

we reported some physiological characteristics of ABX and GF

mice, including the measurement of DEE of GF animals using

the DLW technique, and b3-adrenergic-induced thermogenesis.

Many previous studies reported that ABX or GFmice resist high-

fat diet-induced obesity and have improved glucose metabolism

(Bäckhed et al., 2004; Chevalier et al., 2015; Zarrinpar et al.,

2018). We found that UCP1 expression and whole-body energy

expenditure were blunted with the depletion of gut microbiota.

This contrasts a previous study (Suárez-Zamorano et al.,

2015), which suggested that microbiota depletion promotes

browning. The mix of antibiotics that they used differed from

what we used. Accordingly, we replicated our studies using their

antibiotic recipe (ABX-SZ) but did not find that microbiota

depletion facilitated the browning of WAT. In contrast, we found

that antibiotic-treated mice (independent of the cocktail used)

and GF mice had an impaired capacity for UCP1-dependent

thermogenesis. In addition, the downregulated UCP1 expres-

sion we observed may be considered to be inconsistent with

the improved glucose metabolism performance in the ABX

mice. However, the capacity for glucose uptake is not always

positively correlated with UCP1-dependent thermogenesis

(Olsen et al., 2017). For example, recent studies suggested

that glucose uptake is elevated in Ucp1-knockout (KO) mice

and that brown or beige adipocytes could consume glucose

via the SERCA2b pathway in an UCP1-independent manner

(Ikeda et al., 2017; Olsen et al., 2017).

A healthy gut microbiota community benefits host metabolic

homeostasis, and reciprocally, gut microbiota composition can

be shaped by ambient temperature and macronutrients from

the diet (Chevalier et al., 2015; Dey et al., 2015; Kau et al.,

2011; Turnbaugh et al., 2008; Ziętak et al., 2016). It has been sug-

gested that SCFA levels are positively associated with enhanced

energy metabolism (Donohoe et al., 2011; Gao et al., 2009; Li

et al., 2018), while other microbiota-derived metabolites such
as trimethylamine and imidazole propionate were suggested to

be negatively linked to host health (Hsiao et al., 2013; Koeth

et al., 2013; Koh et al., 2018). The microbiota-derived metabo-

lites not only play vital roles in host immune education and path-

ogen defense but are also involved in host nutrition status (Blan-

ton et al., 2016; Guglielmi, 2018). Here, we confirmed that the

energy absorption capacity declined in ABX mice; furthermore,

the PFmice results suggested that energy intake and the tempo-

rarily lowered body weight observed in ABX mice were not the

cause for the lower energy expenditure and the dampened ther-

mogenic capacity. The absence of gut microbiota, via antibiotic

treatment or in the GF model, can result in a depletion of metab-

olites generated duringmicrobial fermentation in the gut, thereby

promoting a state of gut metabolite deficiency. Our results are

consistent with previous studies that showed that under ABX

treatment, all types of SCFAs and bile acids almost disappeared

in the cecum. A previous study showed that butyrate-producing

bacteria were increased by cold stimulation (Chevalier et al.,

2015), and we confirmed this phenotype. The expression of

Hcar2, a butyrate receptor (Offermanns, 2017), was dramatically

increased in both ABX and ABX-SZ mice compared to control

mice, while other SCFA receptors Ffar2 and Ffar3 showed no

difference. Several recent studies suggested that exogenous

butyrate could enhance host energy expenditure and promote

UCP1 expression (Gao et al., 2009; Li et al., 2018). In a pilot

study, we also found that exogenous butyrate had larger

effects than acetate and propionate (data not shown). This

led us to assess whether exogenous butyrate could rescue hy-

pothermia and promote UCP1 expression when the gut micro-

biota was absent. Using 13C-butyrate metabolic flux analysis,

we found that butyrate uptake and utilization were faster in brain

than in BAT and WAT once butyrate enters the circulation. This

suggests that butyrate possibly acts in the brain via the gut-

brain axis (Mayer et al., 2015) to regulate food intake and

thermogenesis.

In summary, these data showed that antibiotic-mediated

depletion of microbiota does not promote browning of WAT

through type 2 cytokine signaling and alternatively activated

macrophages, but rather negatively affects adaptive thermogen-

esis mediated via both interscapular BAT and the browning of

scWAT. These effects were confirmed in GF mice and in mice

treated with a different ABX. An intact microbiota may thus be

an essential component of the thermoregulatory response, and

microbial-derived butyrate may be amediating factor in this role.

LIMITATIONS OF STUDY

Although we found that DEE and UCP1-dependent thermogen-

esis were blunted via two common ABX protocols and in GF

mice (Abt et al., 2012; Suárez-Zamorano et al., 2015), our work

has several limitations. First, it is inevitable that the background

of gut microbiota composition from our work is distinct from

other studies because of different housing conditions, diet,

sex, age, antibiotic administration route (drinking water or

gavage), and other factors (Ussar et al., 2015). This is a major

challenge for the repeatability in gut microbiota studies. Further-

more, several antibiotics have been reported to be toxic to mito-

chondria (Hangas et al., 2018; Jiang et al., 2018; Kalghatgi et al.,
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2013; Moullan et al., 2015). It is possible that the mitochondrial

function of the host was affected by the antibiotics, even though

we obtained the same results using two rather different cock-

tails. However, we also successfully replicated some of the

data using GF mice, in which no such antibiotic artifacts would

be present. Nevertheless, a gold standard procedure for anti-

biotic treatment mice is urgently needed for gut microbiota

research. Alternatively, studies should use, as we have, multiple

cocktails of antibiotics to show that the response is not cocktail

dependent.

Second, the gut microbiota composition is complex, and even

multiple combinations of antibiotics are unable to deplete the gut

microbiota completely. Antibiotic-resistant bacteria and fungi

remain in the tract under ABX treatment; hence, it is possible

that the imbalance of gut microbiota could influence host energy

homeostasis (Dollive et al., 2013; Lopez et al., 2014; Underhill

and Iliev, 2014). Our study clearly showed that the composition

was changed under cold challenge. However, we were not

able to isolate the impact of the gut microbiome to a single spe-

cies in the microbiota. This may not be a single species effect,

and the details of this mechanism require more study.

Third, themolecular mechanism underlying the role of butyrate

inducing thermogenesis in ABX mice remains unclear. Our data

showed that the butyrate receptor Hcar2 was increased in ABX

mice, suggesting that they may be more sensitive to exogenous

butyrate. Then, themolecular function of butyrate on thermogen-

esis may be related to its role as HDAC inhibitor (Emmett et al.,

2017; Li et al., 2016; Walsh et al., 2015). Using 13C-butyrate

metabolic flux analysis, we showed that the brain uptakes and

uses more butyrate than both BAT and WAT. This is consistent

with a recent report (Li et al., 2018) suggesting that butyrate

could activate BAT through the gut-brain neural circuit. More

work is needed to explore the function of butyrate on the brain.

Lastly, we found that both 3- to 4-week treated ABX and GF

mice showed hypothermia and attenuated energy expenditure

after administering a b3-adrenoceptor agonist. However, we

were unable to perform a cold challenge on GF mice because

of their special housing conditions. Not all experiments are

feasible for GF mice, which is a common drawback of their

use. Despite these limitations, our study still provides the clear

relation between gut microbiota and adaptive thermogenesis

and offers some important insights into future studies using

ABX and GF mouse models to further investigate the mecha-

nisms underpinning the gut-brain axis.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

UCP1 Abcam Cat# ab10983; RRID:AB_2241462

Total HSL CST Cat# 4107; RRID:AB_2296900

Phospho-HSL CST Cat# 4126; RRID:AB_490997

b-actin ZSGB-Bio Cat# TA-09; RRID:AB_2636897

PE-cy7 conjugated anti-CD45 eBioscience Clone 30-F11; Cat# 25-0451; RRID:AB_469625

Percp-5.5 conjugated anti-CD11b eBioscience Clone M1/70; Cat# 45-0112-82; RRID:AB_953558

FITC conjugated anti-F4/80 BioLegend Clone BM8; Cat# 123108; RRID:AB_893502

eF450 conjugated anti-CD11c eBioscience Clone N418; Cat# 48-0114-82; RRID:AB_1548654

PE conjugated anti-CD206 BioLegend Clone C068C2; Cat# 141706; RRID:AB_10895754

AF647 conjugated anti-SiglecF BD PharMingen Clone E50-2440; Cat# 562680; RRID:AB_2687570

Fcg blocker anti-CD16/CD32 eBioscience Clone 93; Cat# 14-0161-85; RRID:AB_467134

Chemicals, Peptides, and Recombinant Proteins

ampicillin J&K A01-290395

neomycin J&K A01-557926

gentamicin J&K A01-405947

metronidazole J&K J07-M0924

vancomycin INALCO 1758-9326

sucralose J&K A01-442522

neomycin Sigma N6386

streptomycin Sigma S1277

penicillin Sigma P3032

vancomycin Sigma V2002

metronidazole Sigma M1547

bacitracin Sigma 11702

ciprofloxacin Sigma 17850

ceftazidime Sigma C3809

gentamycin Sigma G1914

[U13C] butyrate Sigma 488380
12C butyrate Sigma 303410

CL-316243 Sigma C5976

IL-4 Peprotech 214-14

Trizol Invitrogen 15596018

SYBR Green PCR kit TransGen Biotech EP1602

T-PER ThermoFisher 78510

Protease inhibitor cocktail Sigma P8340

PMSF Sigma P7626

bicinchoninic acid (BCA) protein quantification kit ThermoFisher 23227

Immobilon-P PVDF membranes Millipore ISEQ00010

ECL blotting reagents GE Healthcare RPN2232

mouse IL-4 ELISA kit BioLegend 431107

mouse IL-5 Platinum kit eBioscience BMS610

mouse IL-33 Platinum kit eBioscience BMS6025

2-CAT (A-N) ELISA LDN BA-E5400

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Leptin ELISA kit Crystalchem 90030

Insulin ELISA kit Crystalchem 90080

circulating NEFA Biovision K612

Fecal genomic extraction kit Tiangen DP-328

Collagenase I Sigma C0130

Red blood cell lysis buffer Tiangen RT122-01

Experimental Models: Organisms/Strains

Mouse: C57BL/6J-SPF Vital River N/A

Mouse: C57BL/6J-GF SLAC laboratory animal, Shanghai N/A

Oligonucleotide section

Primers Table S5 N/A

Deposited Data

RNA-seq data NCBI GEO GSE117843

16S rDNA data NCBI SRA PRJNA514397

Software and Algorithms

GraphPad version 6 N/A N/A

Minitab 16 N/A N/A

STAR v2.5.3 N/A N/A

HTseq v0.6.1 N/A N/A

R v3.4 N/A N/A

DEseq2 v1.20.0 N/A N/A

QIIME2 N/A N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to the Lead Contact, John R. Speakman

(j.speakman@abdn.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

7-8 week old male wild-type (Control) C57BL/6J mice were purchased from Vital River, Beijing. 11-12 week old male Germ free mice

(GF) and respective C57BL/6J Controls (SPF) were acquired from SLAC laboratory animal, Shanghai. All animal procedures were

approved by the Institute of Genetics and Developmental Biology Chinese Academy of Sciences (IGDB-CAS) Institutional Review

Board Approval numbers for the various experiments are AP2016026, AP2016029, AP2016030, AP2016031 and AP2016032.

Mice were maintained under SPF facility in 12h:12h day and night cycles at 23 ± 1�C and fed standard chow diet (20% Protein,

70%Carbohydrate and 10% Fat, #D12450B, Research Diets, New Brunswick, NJ, USA). Mice were provided with autoclaved drink-

ing water. Antibiotics were administered in the sterile drinking water ad libitum and changed every 3 days, ABX protocol containing

ampicillin (0.5mg/mL, J&K), neomycin (0.5mg/mL, J&K), gentamicin (0.5mg/mL, J&K), metronidazole (0.5mg/mL, J&K), vancomycin

(0.25 mg/mL, INALCO), and sucralose (4 mg/mL, Splenda, J&K) (Abt et al., 2012). ABX-SZ protocol containing neomycin

(100 mg/mL, Sigma), streptomycin (50 mg/mL, Sigma), penicillin (100 U/mL, Sigma), vancomycin (50 mg/mL, Sigma), metronidazole

(100 mg/mL, Sigma), bacitracin (1mg/mL, Sigma), ciprofloxacin (125 mg/mL, Sigma), ceftazidime (100 mg/mL, Sigma) and gentamycin

(170 mg/mL, Sigma) (Suárez-Zamorano et al., 2015). [U13C] butyrate (488380, Sigma) and 12C butyrate (303410, Sigma) were

dissolved in PBS (160 mg/mL). Antibiotic treatment started in 8-9 weeks old animals for 3-4 weeks. For the thermoneutrality

experiments, mice were adapted to 30�C in a laboratory incubator (Jiangnan Instruments) for 3 weeks before manipulation. For

the cold challenge experiments, mice were fed ad libitum and individually housed in cages at 4�C. Tissues, feces contents and serum

were collected at the end of each experiment and quickly snapped in liquid nitrogen then stored in �80�C for further experiments.

For pair feed (PF) experiment, we measured the assimilation efficiency of Control mice and ABX mice every day. We assumed that

the digestive efficiency of PF mice is similar as Control mice, and PF mice were given quota food following the linear relationship

between ABX food intake and ABX body weight.
Cell Reports 26, 2720–2737.e1–e5, March 5, 2019 e2

mailto:j.speakman@abdn.ac.uk
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc&tnqh_x003D;GSE117843
https://www.ncbi.nlm.nih.gov/bioproject/?term&tnqh_x003D;PRJNA514397


METHOD DETAILS

Metabolic phenotype analysis
We used magnetic-resonance whole-body composition analyzer (EchoMRI, Houston, TX) to analyze mice body composition (fat

mass, lean mass and water content). We measured food intake and collected the feces every 24h. The feces were dried at 60�C
for 7 days then subjected to an oxygen bomb calorimeter (Parr, 1281, USA) to measure the calorie excretion of feces. We assessed

energy expenditure and physical activity by using indirect calorimetric system (TSE PhenoMaster, TSE Systems, Bad Homburg,

Germany). Daily energy expenditure (DEE) of GF and SPF mice were measured by the DLW (2H2
18O) technique (Nie et al., 2015).

To assess the effect of b3-adrenergic agonist CL-316243 on the energy expenditure, we treated mice daily for 3 consecutive

days through intraperitoneal administration of either vehicle (PBS) or CL-316243 (1 mg/kg). To assess the effect of IL-4 (50 mg/kg)

on energy expenditure, we treated mice daily for 5 consecutive days through intraperitoneal administration of either vehicle (PBS)

or IL-4. During the whole experimental manipulation, mice were housed in the metabolic chambers of TSE machine.

Quantitative PCR
Tissues were homogenized in Trizol (Invitrogen) by Bead Ruptor (OMNI). Total RNA was isolated using chloroform/isopropyl alcohol

and 3 mg total RNAwas used as the template for cDNA synthesis (Invitrogen). Real-time PCRwas performed using SYBRGreen PCR

kit (TransGen Biotech) and quantitative PCR reaction was carried out in triplicate using 384 well PCRmicroplate for LightCycler 480 II

(Roche). The relative expression levels of each gene were normalized to housekeeping gene TATA-box binding protein (Tbp), the

specificity of amplified genes was verified by dissociation curves. RNA expression data were analyzed according to the -DDCt

method.

Western blotting
The whole adipose tissue pads were homogenized in tissue protein extraction reagent supplemented with a protease inhibitor

cocktail and 10mMPMSF and the lysates were chilled on ice for 30min then centrifuged at 12,000 rpm (10min) to remove cell debris.

The supernatant was collected then the protein concentration was measured by bicinchoninic acid (BCA) protein quantification kit.

Equal amounts of protein were separated on 12% SDS-PAGE gels and blotted onto Immobilon-P PVDF membranes. After blocking

in 5% skim milk in PBS-T (PBS with 0.05% Tween-20) for 1 hour at room temperature, membranes were incubated with primary

antibody at 4�C overnight. To visualize the bands, HRP-labeled secondary antibodies and ECL blotting reagents (GE Healthcare)

were used. The bands were quantified with ImageJ 1.50i software. The primary antibodies used for western blot were UCP1

(#ab10983, diluted 1:3,000, Abcam), Total HSL (#4107, diluted 1:2,000, CST), Phospho-HSL (Ser660) (#4126, diluted 1: 2,000,

CST), b-actin (#AB1015T, diluted 1:5,000, AmeriBiophama).

Histology
10 mm paraffin slice of SPF and GF groups were incubated with xylene for 1min then step rehydration from gradient alcohol to PBS.

The slices were incubated with the hematoxylin for 2 min then stained eosin for 2min. The dehydrated slices were sealed by neutral

balsam.

Hormone measurements
The subcutaneous WAT (scWAT) was homogenized in tissue protein extraction reagent. Total protein was extracted and the

concentration was measured using BCA protein quantification kit. The content of cytokines and norepinephrine in local scWAT

were determined by ELISA kits. IL-4 was measured by mouse IL-4 ELISA kit (#431107, BioLegend). IL-5 and IL-33 were measured

by Platinum ELISA (#BMS610, #BMS6025, eBioscience). Norepinephrine was measured by 2-CAT (A-N) Research ELISA

(#BA-E5400, LDN). Circulating Leptin and Insulin were measured by Crystalchem INC and circulating NEFA was measured by

FFA Quantification Colorimetric/Fluorometric Kit (#K612, Biovision). Triglycerides (GPO-PAP method), total cholesterol (CHOD-

PAP method), high density lipoprotein cholesterol (direct method) and low-density lipoprotein cholesterol (direct method) in circu-

lating were analyzed on the auto clinical chemistry analyzer platform (ZY-330, KHB). Blank Control and quality Controls were added

in every measurement. All the processes were administrated according to the manufacturer’s instructions.

13C enrichment in breath samples
The technique we have developed for the measurement of butyrate homeostasis using [U13C] butyrate involves oral gavage. The

mice were fasted 8 hours before the experiment and transferred to a small chamber with a constant gas flow after the gavage treat-

ment. The flow is regulated such that the outflow CO2 is around 0.5%. This is 20x higher than the atmospheric CO2 hence incoming

CO2 has only a negligible impact on the measurements. The outflow stream is then sampled at 10-minute intervals by collecting gas

into a standard vacutainer for up to 200 minutes. The air samples were analyzed using an auto-sampler linked to a conventional gas

source isotope ratio mass spectrometer (Microgas uG). [U13C] butyrate in circulation entered cells and then ismetabolized appearing

as 13CO2 in the breath. Hence by collecting breath and measuring the 13C:12C ratio in respiratory CO2 this provides an indication of

the rate of butyrate clearance from the body. This provides real time read out of the butyrate in a stress free andmore detailedmanner

than the standard test provides.
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Quantitative analysis of SCFA and TCA cycle metabolites
Mice were orally administrated [U13C] and 12C butyrate sodium (80mg, 1:10 ratio) and harvested tissue after 1-hour treatment. Sam-

ples were immediately frozen by dry ice before LC–MS analysis. SCFA and TCA cycle metabolite measurement and isotope tracing

were conducted via HPLC-MS/MS at LipidALL Technologies. In brief, SCFAs and TCA cyclemetabolites were extracted from various

biological materials (serum, feces, cecum, colon and adipose) using solvent mixtures containing acetonitrile and water. The extract

was then derivatized with 3-nitrophenylhdyrazones and analyzed on a ThermoFisher DGLC-3000 coupled to Sciex QTRAP 6500 Plus

system. Individual metabolites were separated on a Phenomenex Kinetex C18 column (100 3 2.1 mm, 2.6 mm) using 0.1% formic

acid in water as mobile phase A and 0.1% formic acid in acetonitrile as mobile phase B. The gradient started with 15% B which

increases linearly to 100% over 12 min, followed by a re-equlibration at 15% B over 3 min before the next injection. Octanoic

acid-1-13C1 purchased from Sigma-Aldrich was used as an internal standard for quantitation, and molar responses of individual

SCFAs were corrected against that of octanoic acid for accurate quantitation Details of the analysis had been previously published

elsewhere (Han et al., 2013).

Serum metabolites
Serum metabolites were measured and analyzed by GC-TOF-MS at the Biotree corporation. We dried the serum extracts in a

vacuum concentrator without heating. Add 30 mL methoxyamination hydrochloride (20 mg/mL in pyridine), incubation for 30min

at 80�C. Add 40 mL of the BSTFA regent (1%TMCS, v/v) to the sample aliquots, incubated for 2h at 70�C. Add 10 mL FAMEs (Standard

mixture of fatty acid methyl esters, C8-C16: 1mg/mL; C18-C24: 0.5mg/mL in chloroform) to the QC sample it cooling to the room

temperature. GC-TOF-MS analysis was performed using an Agilent 7890 gas chromatograph system coupled with a Pegasus HT

time-of-flight mass spectrometer. The system utilized a DB-5MS capillary column coated with 5% diphenyl cross-linked with

95% dimethylpolysiloxane (30 m3 250 mm inner diameter, 0.25 mm film thickness; J&W Scientific, Folsom, CA, USA). A 1 mL aliquot

of the analyte was injected in splitless mode. Helium was used as the carrier gas, the front inlet purge flow was 3mL min�1, and the

gas flow rate through the column was 1mLmin�1. The initial temperature was kept at 50�C for 1 min, then raised to 300�C at a rate of

20�C min�1, then kept for 6.5min at 300�C.The injection, transfer line, and ion source temperatures were 280, 270, and 220�C,
respectively. The energy was �70eV in electron impact mode. The mass spectrometry data were acquired in full-scan mode with

the m/z range of 50–500 at a rate of 20 spectra per second after a solvent delay of 371 s. Chroma TOF 4.3X software of LECO

Corporation and LECO-Fiehn Rtx5 database were used for raw peaks exacting, the data baselines filtering and calibration of the

baseline, peak alignment, deconvolution analysis, peak identification and integration of the peak area (Kind et al., 2009). The RI

(retention time index) method was used in the peak identification, and the RI tolerance was 5000.

RNA-seq and Bioinformatics
Total RNA from fat tissue were extracted by the RNeasy Mini Kit (QIAGEN) according to manufacturer’s recommendations and

validated by the Agilent 2100 Bioanalyzer. Sequencing libraries were generated using NEBNext� Ultra DNA Library Prep Kit for

Illumina� (NEB, USA) and 150 bp paired-end reads were sequenced on Illumina Hiseq Xten platform in CapitalBio technology

corporation (Beijng). Full sequencing data are available online at NCBI GEO (GSE117843). The paired-end clean reads were aligned

to the reference genome (mm10) using STAR and each gene reads numberswere count byHTseq. Differential expression gene (DEG)

analysis was performed by DEseq2 package in which gene length and dispersion bias was corrected. The resulting P values

were adjusted using the Benjamini and Hochberg’s approach for controlling the false discovery rate (FDR). Genes with an adjusted

P value < 0.05 found by DESeq2 were assigned as differentially expressed.

16S rDNA qPCR and Amplicon Sequencing
Fecal pellets were immediately frozen in liquid nitrogen after collection and stored at �80�C. Fecal nucleic acid was extracted from

fecal pellets using Fecal genomic extraction kit (DP-328, Tiangen technology corporation). SYBR green quantitative PCR for bacterial

16S rRNA genes was performed using primers 515F and 806R. Quantitation of 16S rRNA genes was performed by comparison to a

plasmid standard control of pUC57 containing a 16S rRNA sequence from an uncultured intestinal bacterium from mice (Thackray

et al., 2018). Barcoded PCR primers (341F and 805R) directed at the V3/V4 region of bacterial 16S rRNA genes were used to generate

libraries and libraries were validated by the Agilent 2100 Bioanalyzer. Sequencing were performed with 250 bp paired-end reads on

Illumina Hiseq2500 platform in Annoroad Gene Technology (Beijng). The paired-end clean reads were aligned to the reference

genome (SILVA_132) using QIIME2.

Flow cytometry
Primary stromal vascular fractions (SVF) from BAT, scWAT and pgVAT were prepared to FACS analysis. Details of the analysis had

been previously published elsewhere (Li et al., 2017). In brief, tissues were freshly collected, washed by pre-warm PBS at 37�C and

dissociated by scissors and then incubated with DMEM medium containing 5% fetal bovine serum, 3 mg/mL collagenase I (Sigma)

for 60 min at 37�C. The digested cell suspension was centrifuged at 500 g for 5 min to separate stromal-vascular fraction from

adipocytes. The pelleted cells were incubated with 0.25% trypsin-EGTA for 3 min, then re-suspended in 5 mg/mL Dispase and

50 IU/mL DNaseI for 5 min, erythrocytes were removed by red blood cell lysis for 3 min before filtration through a 40-mm

cell mesh to remove large cellular debris. After cell suspension, cells were incubated in FACS buffer (PBS with 5% FBS and 1%
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Penicillin-Streptomycin) in the presence of staining antibody. The following primary antibodies were used: PE-cy7 conjugated anti-

CD45 (eBioscience, Clone 30-F11), Percp-cy5.5 conjugated anti-CD11b (eBioscience, Clone M1/70), FITC conjugated anti-F4/80

(BioLegend, Clone BM8), eFluor450 conjugated anti-CD11c (eBioscience, Clone N418), PE conjugated anti-CD206 (BioLegend,

Clone C068C2), Alexa Fluor 647 conjugated anti-SiglecF (BD PharMingen, Clone E50-2440), Fcg blocker anti-CD16/CD32

(eBioscience, Clone 93). The positive antibody signals were gated based on fluorescence minus one (FMO) Control every time.

Data was acquired on BD FACS Aria II and data analysis was performed using FlowJo v7.6.1 software.

Thermal conductance of pelage
The thermal conductance of pelage was measured as described in our previous study (Corp et al., 1997). In brief, the pelage was

removed by making a longitudinal ventral incision from the throat to the anus and then separating the pelage from the body cavity.

Pelages were stored at 4�C until assayed (1-3 days). We wrapped the pelage around a small bottle filled with water (20 mL) that con-

tained a temperature transmitter (iButton, DS2422, USA), and then attached it to the bottle with contact adhesive. An incubator was

used to heat the bottle of water to 40�C. After reaching 40�C, the bottle was immediately put into another incubator at 20�C, and then

the temperature, decreasing from 40 to 20�C, was monitored every 10 s. Each data point was transformed according to ln(x-20),

where x is the temperature monitored during the temperature decreasing course. The slope calculated for these transformed data

was defined as thermal conductance.

QUANTIFICATION AND STATISTICAL ANALYSIS

Replicate information is indicated in the figure legends. All results are given as mean ± SEM and analyzed by using statistical tools

implemented in Prism (GraphPad version 6). Statistical analyses were performed using the Student’s t test and regular one-way or

two-way analysis of variance (ANOVA). Differences with p < 0.05 were considered to be significant. p < 0.05 (*), p < 0.01 (**), p < 0.001

(***) and p < 0.0001 (****).

DATA AND SOFTWARE AVAILABILITY

The transcriptomics data for Figures 5 and S6 is now deposited at GEO (the accession number for the transcriptomics data is GEO:

GSE117843). The 16S rDNA data for Figures 6 and S7 is now deposited at SRA (the accession number for the 16S rDNA data is SRA:

PRJNA514397).
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